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Abstract Heat shock protein (Hsp90α) has been recently
implicated in cancer, prompting several attempts to discover
and optimize new Hsp90α inhibitors. Towards this end, we
docked 83 diverse Hsp90α inhibitors into the ATP-binding
site of this chaperone using several docking–scoring set-
tings. Subsequently, we applied our newly developed com-
putational tool—docking-based comparative intramolecular
contacts analysis (dbCICA)—to assess the different docking
conditions and select the best settings. dbCICA is based on
the number and quality of contacts between docked ligands
and amino acid residues within the binding pocket. It
assesses a particular docking configuration based on its
ability to align a set of ligands within a corresponding
binding pocket in such a way that potent ligands come into
contact with binding site spots distinct from those
approached by low-affinity ligands, and vice versa. The
optimal dbCICA models were translated into valid pharma-
cophore models that were used as 3D search queries to mine
the National Cancer Institute’s structural database for new
inhibitors of Hsp90α that could potentially be used as
anticancer agents. The process culminated in 15 micromolar
Hsp90α ATPase inhibitors.

Keywords Docking . LigandFit . dbCICA . Heat shock
protein 90α . Anticancer

Introduction

Heat shock protein 90 (Hsp90) belongs to a family of
molecular chaperones that play a pivotal role in the confor-
mational maturation, stability, and functions of protein sub-
strates within the cell. The ATPase activity of Hsp90α
provides the energy needed to refold denatured cellular
proteins [1]. Amongst the client proteins of Hsp90α are
many oncogenes that are essential for the survival, prolifer-
ation, invasion, metastasis, and angiogenesis of tumors [2].
In fact, several oncogenic proteins have been shown to be
dependent upon Hsp90α for conformational activation, in-
cluding telomerase, Her2 (erbB2), Raf-1, focal adhesion
kinase, and steroid hormone receptors [3].

The validity of Hsp90α as an anticancer target for drug
discovery [4, 5] was further established by emerging clinical
and preclinical trials employing the potent Hsp90α inhibitor
17-allylamino-17-desmethoxygeldanamycin as well as the
natural Hsp90α inhibitors geldanamycin [6], radicicol [7],
and other small molecules [8].

The significance of heat shock protein (Hsp90) as a target
in anticancer research [1–5, 9–14], combined with the avail-
ability of appropriate crystallographic structures for this
target [15, 16], prompted us to apply our newly developed
computational technique—docking-based intermolecular
contacts analysis (dbCICA) [17]—to this target, aiming at
the discovery of new Hsp90α inhibitors.

Molecular docking, which is basically a conformational
sampling procedure in which various docked conformations
are explored to identify the right one, can be a very chal-
lenging problem given the degree of conformational
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flexibility at the ligand-macromolecular level [18–20]. Dock-
ing programs employ diverse methodologies to evaluate dif-
ferent ligand conformations within binding pockets, [21–30],
but they must be guided by scoring functions when evaluating
the fit between the protein and the corresponding docked
ligand(s) [31–37]. The final docked conformations are also
selected according to their scores. The accuracy of the scoring
function has a major impact on the quality of molecular
docking results [22–24, 27, 33, 34, 38–51]. In fact, although
modern dockingmethods are able to calculate the position and
orientation of a potential ligand in a receptor binding site fairly
accurately, the major problem with them is the inability of
scoring functions to evaluate binding free energies correctly,
so that different potential ligand–receptor complexes can be
ranked [38, 52–56]. The underlying ligand–receptor molecu-
lar interactions are highly complex, and various terms should
be considered when quantifying the free energy of the inter-
action process [38, 54, 55, 57–60].

Accordingly, the molecular modeler must find the opti-
mal combination of docking/scoring algorithms capable of
correctly ranking docked conformers/poses of potential
ligands within a certain binding pocket. Moreover, the mo-
lecular modeler must decide whether or not to leave crys-
tallographically explicit water molecules in the binding site
prior to ligand docking [61–66]. Furthermore, the fact that
crystallographic structures lack information on hydrogen
atoms means that it is important to discern, prior to docking,
whether or not the ligand’s ionizable moieties embedded
within the binding site exist in their ionized forms [65,
67]. In this respect, pKa values can be misleading, since
ligand ionizability depends on the local microenvironment
within the binding pocket [67].

These problems necessitate the adoption of some meas-
ures to validate docking experiments for subsequent
structure-based discovery or design [68].

Current validation methods include the following:

(i) Self-docking [69]. However, this technique ignores the
fact that docking experiments are usually performed to
dock ligands into binding pockets patterned (imprinted)
by other co-crystalized ligand(s) (i.e., cross-docking [69]).

(ii) Testing the ability of particular docking configuration
to classify compounds in structural databases into
actives and inactives [70]. The results are usually pre-
sented using receiver operating characteristic (ROC)
curves. However, this approach assumes that decoy
molecules are inactive, despite a lack of supporting
evidence for this [71].

(iii) Validation using 3D-QSAR methods. In this case, a
particular docking configuration is considered valid if
it succeeds in aligning a set of known ligands (i.e.,
into the binding pocket) in a 3D alignment capable of
explaining bioactivity variations (e.g., via CoMFA)

[58, 72, 73]. However, this approach is quite time-
consuming and laborious, as CoMFA grids include
thousands of energy field points that require energy
calculations and then statistical filtering to search for
field points that can explain bioactivity variations.

To minimize the drawbacks of molecular docking, and to
avoid the inadequacies of existing validation methods, we
envisaged dbCICA. This innovative technique assesses any
particular docking configuration based on its ability to align
a set of ligands (i.e., within a corresponding binding pocket)
in such a way that potent ligands come into contact with
binding-site atoms distinct from those approached by low-
affinity ligands, and vice versa. dbCICA evaluates the con-
sistency of docking by assessing the correlation between
ligand affinities and their contacts with binding-site spots.
We evaluated the ability of this technique to validate dock-
ing configurations against fungal N-myristoyl transferase
and glycogen phosphorylase [17].

In the research presented in this paper, we docked 83
Hsp90α inhibitors into the ATPase-binding pocket of this
chaperone using LigandFit [29, 74] using different docking
conditions and settings. Subsequently, we implemented
dbCICA modeling as a tool to measure the success of each
set of docking parameters. Thereafter, optimal dbCICA mod-
els were employed as templates to generate pharmacophore
models that were employed as search queries to screen the
National Cancer Institute (NCI) structural database for new
GP and CaNMT inhibitors. Hits were subsequently bioas-
sayed. Several hits illustrated good biological properties. We
then evaluated the ability of dbCICA to identify the optimal
docking conditions. Furthermore, the resulting dbCICA mod-
els were used to formulate pharmacophore models that were
used as 3D search queries to retrieve new hits from the
structural database of the National Cancer Institute (NCI).
These hits were subsequently bioassayed. Several hits illus-
trated low micromolar anti-Hsp90α properties.

Experimental

Molecular modeling

Software and hardware

The following software packages were utilized in the pres-
ent research:

& CS ChemDraw Ultra, v.11.0 (CambridgeSoft Corp.,
Cambridge, MA, USA)

& MarvinView, v.5.1.4 (ChemAxon, Budapest, Hungary)
& Discovery Studio (DS) 2.5 (Accelrys Inc., San Diego,

CA, USA)
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& Ligandfit in Cerius2, v.4.10 (Accelrys Inc.)
& MATLAB, v.R2007a (The MathWorks Inc., Natick,

MA, USA)
& Catalyst, v.5.11 (Accelrys Inc.)

Data set

Hsp90

The structures of 83 Hsp90α inhibitors were collected from
the literature [75–77]. They were carefully collected to
ensure that they had all been bioassayed under similar con-
ditions to allow consistent structure–activity correlation.
The in vitro bioactivities of the collected inhibitors were
expressed as the concentration of the test compound that
inhibited the activity of Hsp90α enzyme by 50 % (i.e., IC50).
Figure A and Table A in the “Electronic supplementary
material” (ESM) show the structures and IC50 values of the
collected inhibitors. The logarithms of the measured IC50

(μM) values were used in structure–activity correlation, thus
yielding a linear correlation between the IC50 data and the
free-energy changes.

Preparation of ligands

The two-dimensional structures of the collected inhibi-
tors (1–83 in Fig. A and Table A of the ESM) were
sketched in ChemDraw Ultra (v.11.0). Two protonation
states were assumed for each inhibitor: ionized and
unionized, as guided by MarvinView. In the ionized
forms, amino substituents (pKa≈9.0–9.5) were protonat-
ed and given formal positive charges at the appropriate
atoms, while carboxylic acids were deprotonated and
given formal negative charges at the appropriate atoms.
The structures were subsequently converted into reason-
able three-dimensional representations using the rule-
based conformational methods implemented in DS 2.5,
and were saved in the SD format for subsequent dock-
ing experiments.

Preparation of crystal structures

The 3D coordinates of Hsp90α were retrieved from the
Protein Data Bank (Hsp90α PDB code: 1YET, resolution:
1.9 Å). Hydrogen atoms were added to the protein, utilizing
DS 2.5 templates for protein residues. Gasteiger–Marsili
charges were assigned to the protein atoms, as implemented
within DS 2.5 [78].

The protein structures were utilized in subsequent dock-
ing experiments without energy minimization. Explicit wa-
ter molecules were either retained or removed according to
the required docking conditions (i.e., docking in the pres-
ence or absence of explicit water molecules).

Docking settings

LigandFit considers the flexibility of the ligand and considers
the receptor to be rigid. See the section “SM-3” in the ESM for
more details about the LigandFit algorithm [49, 51, 74, 79].

In the current docking experiments, the binding site was
generated from the co-crystallized ligand (geldanamycin,
GMD), and all 83 ligands in their ionized and unionized
forms were docked into the binding site in the presence and
absence of explicit water molecules, employing the follow-
ing docking configurations:

& Monte Carlo search parameters were: number of trials0
15000; search step for torsions with polar hydrogens030.0°.

& The RMS threshold for ligand-to-binding-site shape
matching was set to 2.0 Å, employing a maximum of
1.0 binding-site partitions.

& The interaction energies were assessed employing the
CFF force field (v.1.02) with a nonbonded cutoff dis-
tance of 10.0 Å and distance-dependent dielectric. An
energy grid extending 3.0 Å from the binding site was
implemented. The interaction energy was estimated with
a trilinear interpolation value using soft potential energy
approximations [74].

& Rigid body ligand minimization parameters: 20 steepest
descent iterations followed by 40 BFGS-minimization
iterations were applied to every orientation of the
docked ligand. The best ten poses were further energy-
minimized within the binding site for a maximum of 200
rigid body iterations.

High-ranking docked conformers/poses were scored us-
ing six scoring functions: Jain [41], LigScore1, LigScore2
[34, 74], PLP1 [79], PLP2 [45], and PMF [49, 51]. Consid-
ering each scoring function in turn, the highest-scoring
docked conformer/pose of each inhibitor was selected for
subsequent 3D-QSAR modeling. This resulted in six sets of
83 docked molecules with scores corresponding to each
scoring function. However, the docking and scoring cycle
was repeated four times (2 × 2) to cover the different
combinations of docking conditions: hydated or nonhy-
drated binding sites, and ionized or unionized ligands. Lig-
Score1 and LigScore2 scores were calculated employing the
CFF force field (v.1.02) and using grid-based energies with
a grid extension of 5.0 Å across the binding site. PMF scores
were calculated employing cutoff distances of 12.0 Å for
carbon–carbon interactions and other atomic interactions.

Docking-based comparative molecular contacts analysis
(dbCICA)

The methodology of dbCICA can be described as a series of
steps:
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(i) The highest-ranking docked pose/conformer of each
ligand for a particular docking condition is evaluated
to identify its closest atomic neighbors in the binding
pocket. Intermolecular atomic neighbors that are closer
than (or equal to) a certain predefined distance thresh-
old are assigned an intermolecular contact value of 1;
otherwise they are assigned a contact value of 0 (zero).
For example, if atom A in the docked ligand is posi-
tioned close to atom B in the binding pocket at a
distance shorter that the predefined threshold, then this
contact is assigned a value of 1. Distance assessment is
performed automatically, employing the intermolecular
monitor implemented in Discovery Studio v.2.5 [80]
combined with a MATLAB script we wrote. Eventual-
ly, this step yields a two-dimensional matrix with row
labels corresponding to docked ligands (i.e., according
to the particular docking–scoring configuration) and
column labels corresponding to different binding-site
atoms. The matrix is filled with binary code, whereby
zeros correspond to interatomic distances above the
predefined threshold and ones to distances below (or
equal to) the predefined threshold. In the Hsp90α study,
three distance thresholds were implemented: 3.5, 2.5, or
2.0 Å. Therefore, three (Hsp90α) binary matrices
(corresponding to each distance threshold) were con-
structed for each docking configuration (i.e., combina-
tion of docking engine, scoring function, ligand
ionization state, and binding-site hydration status).

(ii) Each individual column in the matrix is regressed
against the corresponding molecular bioactivities
[i.e., log(1/IC50)]. Columns that exhibit a negative
correlation with bioactivity are inverted (i.e., zeros
are converted to ones and vice versa), and excluded
from the subsequent step.

After excluding inverted columns (negative con-
tacts or exclusion volumes), the resulting binary matrix
(which is composed of positively correlated contact
columns with bioactivity) is then subjected to a genetic
algorithm (GA)-based search for the optimal summa-
tion of the contact columns that is capable of explain-
ing the variation in bioactivity. In this step, the GA
relies on the evolutionary operations of crossover and
mutation to select the optimal combination of columns
which have summation values that are collinear with
the bioactivity variation across the training compounds
(see the discussion of GA parameters below). The best
column-summation model (single model) is selected as
the representative dbCICA model.

The GA can be instructed to output the best
dbCICA models resulting from any predefined number
of ligand–receptor intermolecular positive contacts,
such as the best dbCICA models resulting from sets
of two or three or four or five (and so on) concomitant

contacts (i.e., summed contact columns). In the current
work, we instructed GA to search for the best dbCICA
models resulting from two contacts, and to repeat the
scan to identify the best summation models for three,
four, five, six, seven, eight, nine, and ten contacts.
Each set of summed contacts is treated independently
to identify the corresponding dbCICA model in each
case.

(iii) When using the dbCICA algorithm, there is an option
to allow any particular positive contacts column to
emerge up to three times in the optimal summation
model (i.e., it allows variable weights for contacts).
This is performed by implementing dual-valued genes
in the GA, where every gene encodes for both the
corresponding contact column number and its weight.
Column weights are initially randomly distributed in
the first generation, and are subsequently subjected to
mutation only (not crossover) in GA. This option was
allowed in the current work in order to identify inter-
molecular contacts of higher weights or contributions
in the optimal dbCICA models.

(iv) After identifying the optimal summation model(s)
based on positive contacts (proportional to bioactivi-
ty), dbCICA gets the GA to search for the optimal
summation model resulting from combining inverted
columns [negatively proportional to bioactivity, see
step (ii)] with the optimal positive summation model
(s). The user has the option of choosing any number of
negative contacts (excluded volumes or steric clashes)
to emerge in the final dbCICA model. In the current
experiment, we implemented two exclusion settings:
either five or ten negative contacts were allowed.

Implementation of the genetic algorithm during dbCICA
modeling

The GA toolbox within MATLAB (v.R2007a) was adapted
by implementing the following four basic components: the
creation function, the crossover function, the mutation func-
tion, and the fitness function.

The creation function randomly generates a population of
chromosomes of a predefined size (number of summed
contact columns, as mentioned in step (ii) in the
section “Docking-based comparative molecular contacts
analysis (dbCICA)” under “Experimental”) in which every
chromosome encodes for a certain possible column summa-
tion model. Chromosomes differ from one another in the set
of summed columns and their weights that they represent.

Crossover children are the offspring created by selecting
vector entries (i.e., genes) from a pair of individual chromo-
somes in the first generation and combining them to form two
complementary children, while mutated children are those
created by applying random changes to corresponding parents
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(i.e., each single parent chromosome is mutated to give a single
child by randomly replacing a selected gene in the parent
chromosome with another from the chromosome population).

Each chromosome is associated with a fitness value that
reflects how good the summation of its encoded genes is
compared to those of other chromosomes. The fitness func-
tion used in dbCICA can be the correlation coefficient (r2),
the leave-one-out r2, or the K-fold r2.

In the current experiments we implemented the fivefold
r2 as the fitness criterion. In this procedure, each chromo-
some is ranked as follows. The training set is divided into
two subsets: the fit and test subsets. The test subset is
randomly selected to represent ca. 20 % of the training
compounds. This procedure is repeated over five cycles;
accordingly, five test subsets with their complementary fit
subsets are selected for each chromosome (i.e., column
summation model). The five test subsets should cover ca.
100 % of the training compounds as the same compound
cannot be selected in more than one test subset. The fit sets
are then utilized to generate five submodels employing the
same chromosome. The resulting submodels are then uti-
lized to predict the bioactivities of the corresponding testing
subsets. Finally, the predicted values of all five test subsets
are correlated with their experimental counterparts to deter-
mine the corresponding fivefold r2.

The following parameters were chosen for GA genetic
manipulation in the dbCICA of Hsp90α experiments: size
of chromosome population0200; rate of mating (crossover
fraction)080 %; elite count01; maximum number of gen-
erations needed to exit from the GA iterations (completing
the algorithm)02000.

Based on these settings, the numbers of each type of child
in the offspring generation were as follows: There is one
elite child (corresponding to the individual in the parents’
generation with the best fitness value), and there are 199
individual children other than the elite child. The algorithm
rounds 0.8 (crossover fraction) × 1990159.2 to 159 to get
the number of crossover children, and the remaining 40 (i.e.,
199–159) are the mutated population. The elite child is
passed to the offspring population without alteration.

Molecular field analysis

To validate the dbCICA models, we used comparative mo-
lecular field analysis (CoMFA) to assess the ability of
corresponding docking-based molecular alignments to yield
self-consistent 3D-QSAR models [58, 72, 73]. We used the
molecular field analysis (MFA) and the genetic partial least
squares (G/PLS) modules implemented in Cerius2® to per-
form 3D QSAR analysis [58, 72, 73]. See the section “SM-
4” in the ESM for experimental details.

Generation of pharmacophores corresponding to successful
dbCICA models

In order to utilize dbCICA modeling for effective drug
discovery, optimal dbCICA models were used to guide the
development of pharmacophoric models to be used as
search queries for the discovery of new Hsp90α inhibitors.
The pharmacophores were developed through the following
steps (see Figs. 2, 3, 4, and 5):

1. Docking configurations that yielded the best dbCICA
models were selected (see Tables 1 and 2). The
corresponding docked poses/conformers of the most
potent compounds (Hsp90α inhibitors of IC50<
0.05 μM) were retained in the binding pocket, while
other less potent compounds were discarded.

2. Subsequently, the optimal dbCICA models (i.e., models
I, II, or III; Tables 1 and 2) were used to predict the
bioactivities of potent compounds in the binding pocket
(i.e., by substituting the number of contacts of each
docked compound into the regression equation
corresponding to the dbCICA model). Well-behaved
potent compounds were retained in the binding pocket
for subsequent manipulation (here, “well-behaved”
compounds are defined as training compounds with
bioactivities that are accurately predicted by the selected
optimal dbCICA model; i.e., there was a relatively small
residual difference between the fitted and experimental
bioactivities as predicted by the particular dbCICA

Table 1 Highest-ranking anti-Hsp90α dbCICA models, their corresponding parameters, and statistical criteria

dbCICA
model

Ligand
ionization
state

Explicit
watera

Scoring
function

Contact distance
thresholdb (Å)

Number of
positive contactsc

Number of
negative contactsd

r83
e r2LOO

f r25-
fold

g

I Ionized Present JAIN 3.5 8 10 0.75 0.54 0.54

II Unionized Present JAIN 3.5 8 5 0.81 0.64 0.66

III Unionized Present PLP2 3.5 5 5 0.81 0.63 0.64

a Crystallographically explicit water of hydration. b Distance thresholds used to define ligand–binding site contacts. c Optimal number of combined (i.e.,
summed) bioactivity-enhancing ligand–binding site contacts. d Optimal number of combined (i.e., summed) bioactivity-disfavoring ligand–binding site
contacts. e Non-cross-validated correlation coefficient for 83 training compounds. f Cross-validation correlation coefficients determined by the leave-
one-out technique. g Cross-validation correlation coefficients determined by the leave-one-out technique repeated five times
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model; see Figs. 2, 3, 4, and 5). Badly predicted docked
compounds were discarded.

3. Significant positive contacts in the binding pocket (i.e.,
those that have weights of 2 or 3) were marked and
carefully assessed to identify their closest ligands’ moi-
eties. Consensus among potent, well-behaved training
compounds that moieties with the same physicochemi-
cal properties should be positioned adjacent to a signif-
icant contact atom in the binding pocket (as defined by
the dbCICA model) warranted the placement of the
corresponding pharmacophoric feature into that region.
For example, if potent, well-behaved docked com-
pounds agreed that quaternary ammonium moieties
should be placed adjacent to a certain dbCICA signifi-
cant contact point [within the predefined distance
threshold, see point (i) in the section “Docking-based
comparative molecular contacts analysis (dbCICA)” un-
der “Experimental”], then a positive ionizable (PosIon)
feature was placed on top of the quaternary ammonium
moieties. The pharmacophoric query features were
added manually from the DS 2.5 feature library, and
the default feature radius (1.6 Å) was employed.

4. Finally, to account for the steric constraints of the binding
pocket, binding-site atoms that exhibited contacts that
were negative correlated with bioactivity [i.e., those
inverted in step (ii) in the section “Docking-based

comparative molecular contacts analysis (dbCICA)” un-
der “Experimental”] were marked and used as centers for
exclusion spheres. Negative contacts identify spaces that
are occupied by docked conformers/poses of inactive
compounds and are free of active ones, so they can be
filled with exclusion volumes. Exclusion spheres were
added manually from the DS 2.5 feature library, and the
default feature radius (1.2 Å) was employed.

In silico screening of the NCI database for new Hsp90α
inhibitors

The resulting pharmacophore models (Hypo-IA, Hypo-IB,
Hypo-II, and Hypo-III) were further sterically refined by
adding exclusion volumes via the software package
HipHop-Refine [80–82] (part of the Catalyst software suite
from Accelrys Inc.); see the section “SM-2” and Table C in
the ESM for more experimental details. The sterically
refined versions of the four pharmacophores were
employed as 3D search queries to screen the National
Cancer Institute (NCI) list of compounds (238,819 com-
pounds). Screening was performed employing the “best
flexible database search” option implemented within
Catalyst.

NCI hits were subsequently filtered based on molecular
weight, such that only hits with molecular weights of ≤550

Table 2 Critical binding-site
contact atoms proposed by the
optimal dbCICA models for
Hsp90α inhibitors

a Numbers and distance thresh-
olds are as in Table 1. b

Bioactivity-enhancing ligand–
binding-site contacts. c Binding-
site amino acids and their sig-
nificant atomic contacts. Atom
codes are as provided by the
Protein Data Bank file format
[e.g., ASP102:OD2 encodes for
an oxygen atom (D2) of the car-
boxylic acid side chain of
aspartic acid 102], except for
hydrogen atoms, which were
coded by DS 2.5. d Degree of
significance (weight) of the
corresponding contact atom,
which indicates the number of
times it emerges in the final
dbCICA model [see point (iii) in
the section “Docking-based
comparative molecular contacts
analysis (dbCICA)” under
“Experimental”). e Bioactivity-
disfavoring ligand–binding-site
contacts (steric clashes)

dbCICA
model

Favored contact atoms (positive contacts)a,b Disfavored contact atoms (negative contacts)e

Amino acids and corresponding
atom identities c

Weightsd

I ASP102: OD2 2 ASN51:HB1, ASP54:HA, ASP93:CG,
ASP93:OD1, GLY97:HA1, LEU107:CD1,
LYS112:HD1, MET98:SD, HOH106:H2,
HOH132:H1

ASP54:OD1 3

ILE96:CB 2

ILE96:HG11 3

PHE138:CE1 3

TYR139:CZ 2

HOH141:H2 3

HOH188:H2 1

II ASN51:HD22 3 ALA55:N, ASN51:OD1, ASP93:CG,
SER52:OG, TYR139:CD2ASP102:OD2 3

HIS154:ND1 1

LYS112:HZ3 2

LYS58:HE1 2

THR184:HG21 1

THR184:OG1 2

HOH246:O 2

III THR184:HG1 2 ALA55:HA, ASN51:HA, ASN51:O,
GLY97:CA, SER52:CAVAL136:O 2

THR184:HG22 1

ASP102:OD1 2

LYS112:HZ1 1
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Daltons were retained. Surviving hits were docked into the
ATPase-binding pocket of Hsp90α (PDB code: 1YET, res-
olution 1.9 Å), employing the docking conditions of the
corresponding successful dbCICA models (models I, II, or
III, Table 1 and 2). The resulting docked poses were subse-
quently analyzed for critical contacts according to the
dbCICA models I, II, or III (Table 1 and 2), and the number
of critical contacts for each hit compound was used to rank
the hits. The highest-ranking available hits were acquired
and tested in vitro.

In vitro experimental studies

Materials

NCI samples were kindly provided by the National Cancer
Institute and were of purity >95 %. Recombinant human
Hsp90α (Bioquote, York, UK), ATP 100X solution, gelda-
namycin standard inhibitor (Bioquote), a Quantichrome
ATPase/GTPase kit (BioAssay Systems, Hayward, CA,
USA), water for bioanalysis (Sigma, St. Louis, MO, USA),
and DMSO for bioanalysis (Sigma) were also used.

Preparation of hit compounds for in vitro assay

The tested compounds were provided as dry powders in
variable quantities (30 mg). They were initially dissolved
in DMSO to give stock solutions of 0.20 M. Subsequently,
they were diluted to the required concentrations with deion-
ized water for enzymatic assay.

Quantification of the inhibitory effect on Hsp90α
using a spectrophotometric assay

The ATPase activity of Hsp90α was quantified by colori-
metric measurement of released inorganic phosphate. Bio-
assays were performed by mixing Hsp90α solution (6 μL,
25 μg/mL in assay buffer), 24 μL of assay buffer, and 5 μL
of the particular tested compounds to yield final inhibitor
concentrations of 10, 1, and 0.1 μM per well (in some cases
0.01 μM). The final concentration of DMSO did not exceed
1.0 %. The mixtures were incubated for 30 min at 37 °C in
an ELISA plate shaker, and then ATP solutions (5 μL, 4 mM
in assay buffer) were added to each mixture. A blank was
prepared as above except that 5 μL of distilled water were
used instead of inhibitor solution. The mixtures were equil-
ibrated to 37 °C and incubated for 24 h.

The enzymatic reaction was terminated by the addition of
80 μL of malachite green ammonium molybdate–Tween 20
solution in 0.27 M H2SO4 and 10 μL of 34 % sodium
citrate. Color was allowed to develop at room temperature
for 30 min, and sample absorbances were determined at
λmax0620 nm using a plate reader (ELx 800, BioTek

Instruments, Winooski, VT, USA). Inhibition of Hsp90α
was calculated as the percent activity of the uninhibited
ATPase control. Geldanamycin was tested as a positive
control, while negative controls were prepared by adding
the substrate after reaction termination [83–85].

Results and discussion

Basic concept of dbCICA

Although docking engines suffer from an inability to calcu-
late the free energy of binding, they normally succeed in
reproducing co-crystallized ligand poses/conformations
among their high-ranking docking solutions [38, 52–56].
This suggests that it is quite possible to correlate docked
3D ligand poses/conformers with bioactivities, as shown
previously using CoMFA modeling [58, 72, 73].

In dbCICA, interest is focused on identifying a set of
atoms within the binding site that tend to contact with potent
docked ligands and avoid poorly active docked ligands. If
such a set of contact atoms is identified for a docked list of
ligands, then one can assume that the docking configuration
is successful (i.e., it succeeded in arranging the molecules in
a such way that explains the variation in bioactivity).

Presumably, high ligand–receptor affinity is mediated by
a certain critical number of interactions; i.e., potent ligands
usually participate in certain critical interactions (hotspots)
within the binding pocket. However, the fact that docking
engines and scoring functions evaluate a large number of
ligand–receptor interactions to generate their docking solu-
tions means that the influence of these critical interactions
could be diluted or even overlooked. In this context, iden-
tifying a set of affinity-discriminating contact atoms within
the binding site should help us to not only validate a partic-
ular docking configuration but also to pinpoint the critical
ligand–receptor interactions that are responsible for affinity,
as these discriminatory contacts encode for nearby attractive
interactions. In fact, the resulting dbCICA models can be
translated into pharmacophoric models with a limited num-
ber of critical binding features, which can then be used as
3D search queries to mine for new ligands.

Practical aspects and the implementation of dbCICA

The dbCICA concept prompts a question about the definition
of “contacts”—the interatomic distance thresholds that can be
considered acceptable contacts. The fact that most ligand–
receptor interactions, including hydrogen bonding and van
der Waals forces, show their optimal strengths at distances
of 2.0–3.5 Å prompted us to perform dbCICA analysis by
implementing three distance thresholds as interatomic con-
tacts: 2.0, 2.5, or 3.5 Å. Interatomic distances below (or equal
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to) the predefined threshold are considered contacts and are
encoded by a binary value of 1, while larger distances are
considered noncontacts and encoded by a 0 (zero). Interatomic
distances are calculated based on explicit hydrogen atoms.

As mentioned earlier, discriminatory ligand–receptor con-
tacts are surrogates for nearby critical ligand–receptor interac-
tions. However, since ligand–receptor affinity is normally
mediated by a set of concomitant critical attractive interactions,
it is expected that their proxy contacts are also concomitant. This
basic principle is represented in dbCICA analysis by searching
for discriminatory ligand–receptor contacts that have summa-
tion values that are directly proportional to bioactivity (i.e.,
searching for concurrent contacts rather than separate contacts).

Furthermore, in our dbCICA algorithm, there is the op-
tion to allow any particular positive contact column to
emerge up to three times in the optimal summation model
(i.e., allowing variable weights for contacts). This option
identifies intermolecular contacts with higher weights or
contributions in the optimal dbCICA models [see point
(iii) in the section “Docking-based comparative molecular
contacts analysis (dbCICA)” in “Experimental”].

Still, some contacts are expected to be inversely propor-
tional to bioactivity (i.e., negative contacts). These contacts
encode for repulsive interactions (steric clashes). However,
to remove any correlation faults resulting from summations

Fig. 1 Comparison between the co-crystallized pose of GMD (red,
PDB code: 1YET, resolution 1.9 Å) and its docked pose in Hsp90α
according to the docking conditions of models I, II, and III, showing an
RMSD of 0.539 Å (blue, Table 1)

Fig. 2 Steps for the manual generation of the binding hypothesis
Hypo-IA as guided by dbCICA model I (Tables 1 and 2). a The
binding-site moieties in dbCICA model I, with significant contact
atoms shown as spheres. b The docked pose of the well-behaved
compound 40 (Fig. 1 and Table A in the ESM, IC5000.014 μM) within
the binding pocket. c The docked poses of the well-behaved and potent
compounds 38, 40, 43, 44, and 45 (Fig. 1 and Table A in the ESM). d
Manually placed pharmacophoric features on chemical moieties

common to the docked well-behaved potent compounds 38, 40, 43, 44,
and 45. Light blue spheres represent hydrophobic features, red spheres
represent positive ionizable features, violet spheres represent hydrogen-
bond donors, and gray spheres represent exclusion regions. e The docked
pose of 40 and how it relates to the proposed pharmacophoric features. f
Exclusion spheres fitted against binding-site atoms showing negative
correlations with bioactivity (as emergent in dbCICA model I)
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of negative and positive contacts during the search for
optimal contact combinations, dbCICA analysis is preceded
by a scan for the correlations between each contact column
and bioactivity. Inversely proportional contacts (i.e., nega-
tive contacts) are removed during the initial search phase for
optimal combinations of positive contacts.

Nevertheless, since ligand–receptor binding is controlled by
both attractive and repulsive forces, both positive and negative
contacts are later combined in dbCICA models. However, to
maintain the consistency of correlation calculations (i.e., to
maintain the trend for direct proportionality between the con-
tact combinations and bioactivities), it was decided to invert
the negative contacts by converting their zeros to ones and vice
versa. Subsequently, a second search phase is performed to
find optimal summations of negative contacts that, upon com-
bination with previously defined optimal positive contact sum-
mations, yield optimal correlations with bioactivity.

It remains to be mentioned that dbCICA contact summation
models are judged based on three success criteria: the correla-
tion coefficient (r2), the leave-one-out r2 (rLOO

2), or the K-fold

r2 (rK-fold
2). See the section “Implementation of the genetic

algorithm during dbCICA modeling” in “Experimental” for
more details.

Using dbCICA to discover Hsp90α inhibitors

We decided to employ dbCICA to identify the optimal
conditions and parameters needed for the successful dock-
ing of 83 Hsp90α inhibitors (Fig. A and Table A in the
ESM). The optimal dbCICA models were converted into
pharmacophore hypotheses, which we used as 3D search
queries to mine for new ATPase inhibitors of Hsp90α from
the NCI list of compounds.

The study was performed as follows. The collected com-
pounds were docked into the ATPase active site of Hsp90α,
employing the LigandFit docking engine [29, 74]. We se-
lected the Hsp90 crystal structure (i.e., 1YET) of a relatively
large binding pocket (i.e., compared to other related struc-
tures, e.g., 2VCI or 2VCJ or 2UWD) to allow the docking
engine to explore diverse docked ligand poses/conformers,

Fig. 3 Steps for the manual generation of the binding hypothesis
Hypo-IB as guided by dbCICA model I (Tables 1 and 2). a The
binding-site moieties in dbCICA model I, with significant contact
atoms shown as spheres. b The docked pose of the well-behaved
compound 40 (Fig. 1 and Table A in the ESM, IC5000.014 μM) within
the binding pocket. c The docked poses of the well-behaved and potent
compounds 38, 40, 43, 44, and 45 (Fig. 1 and Table A in the ESM). d
Manually placed pharmacophoric features on chemical moieties

common to the docked well-behaved potent compounds 38, 40, 43,
44, and 45. Light blue spheres represent hydrophobic features, violet
spheres represent hydrogen-bond donors, and gray spheres represent
exclusion regions. e The docked pose of 40 and how it relates to the
proposed pharmacophoric features. f Exclusion spheres fitted against
binding-site atoms showing negative correlations with bioactivity (as
emergent in dbCICA model I)
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thus leading to a better test of the ability of dbCICA analysis
to identify the best docking solutions. This is particularly
important since the training compounds are closely conge-
neric, which might lead different docking settings to con-
verge on closely related docked poses/conformers.

Four docking variations were implemented: two related
to ligand ionization (ionized vs. unionized ligands), and two
related to the binding site hydration state (a hydrated vs. a
nonhydrated binding site).

Subsequently, the resulting docking solutions were
scored by six different scoring functions: Jain [41], Lig-
Score1, LigScore2 [34, 74], PLP1 [79], PLP2 [45], and
PMF [49, 51]. The highest-ranking ligand conformers/
poses, based on each scoring function, were aligned against
each other to construct the corresponding dbCICA models.

Three contact binary matrices were generated for each
docking-scoring solution (see the section “Docking-based
comparative molecular contacts analysis (dbCICA)” in
“Experimental”). Subsequently, a genetic algorithm (GA)-
based search was implemented to search for the best com-
bination (summation) of ligand–receptor intermolecular
contacts capable of explaining the variation in bioactivity
across the training compounds. GA was instructed to scan

combinations of 2–10 directly proportional intermolecular
(positive) contacts, followed by five or ten inversely pro-
portional (negative) contacts.

Table 1 shows the contacts thresholds in Å, the number of
positive and negative contacts, and statistical criteria for the
three best dbCICA models. In the table, it is clear that all
high-ranking dbCICA models have mediocre statistical cri-
teria, with r5-fold

2 values ranging from 0.54 to 0.66. We
believe that this behavior is due to the fact that, in dbCICA
modeling, the bioactivities of training compounds are cor-
related with contact summation (i.e., a single descriptor in
each round of genetic iterations). Correlation with a single
descriptor is expected to yield mediocre correlation statis-
tics. However, correlation with multiple contacts failed to
achieve any substantial prediction. Moreover, the funda-
mental theory of dbCICA is based on the occurrence of
simultaneous contacts, which are best represented by sum-
mation. Therefore, we believe that the best use of dbCICA
statistical criteria is to rank the corresponding models and
prioritize them for translation into pharmacophore models.

Table 1 shows that JAIN-based scoring was superior to
other scoring functions, as two out of the three best dbCICA
models were based on JAIN, followed by the PLP2

Fig. 4 Steps for the manual generation of the binding hypothesis
Hypo-II as guided by dbCICA model II (Tables 1 and 2). a The
binding-site moieties in dbCICA model II, with significant contact
atoms shown as spheres. b The docked pose of the well-behaved
compound 42 (Fig. 1 and Table A in the ESM, IC5000.036 μM) within
the binding pocket. c The docked poses of the well-behaved and potent
compounds 34, 40, 42, 43, 44 and 45 (Fig. 1 and Table A in the ESM).
d Manually placed pharmacophoric features on chemical moieties

common to the docked well-behaved potent compounds 34, 40, 42,
43, 44, and 45. Light blue spheres represent hydrophobic features,
violet spheres represent hydrogen-bond donors, green spheres repre-
sent hydrogen-bond acceptors, and gray spheres represent exclusion
regions. e The docked pose of 42 and how it relates to the proposed
pharmacophoric features. f Exclusion spheres fitted against binding-
site atoms showing negative correlations with bioactivity (as emergent
in dbCICA model II)
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scoring function. Similarly, a hydrated binding pocket
enhanced the quality of the dbCICA models, as all high-
ranking dbCICA models were based on docking solutions
performed on a hydrated binding pocket. However, ligand
ionization seems to be less important, as only one out of
the three successful dbCICA models was based on ionized
ligands, (i.e., dbCICA model I, Table 1). Each of the three
optimal dbCICA models in Table 1 provided an excellent
framework for subsequent development into a promising
pharmacophoric hypothesis for in silico screening (see
below). Interestingly, the docking conditions corresponding
to the three optimal dbCICA models succeeded in repro-
ducing the co-crystallized conformer of geldanamycin. In
fact, the three docking conditions yielded almost the same
geldanamycin docked conformer/pose close to the co-
crystallized conformer (RMS00.539 Å; see the
section “Validation of optimal anti-Hsp90α dbCICA models”
in “Results and discussion” for more details). Figure 1 com-
pares how these conditions dock geldanamycin in comparison
to the corresponding co-crystallized structure.

Figures 2, 3, 4, and 5 show the critical contact atoms
within the Hsp90α binding site, while Table 2 lists them and
their weights as proposed by the optimal dbCICA models I,

II, and III. It is apparent from the table and figures that,
despite their consensus in reproducing the same docked
conformer/pose for geldanamycin (Fig. 1), the three optimal
dbCICA models point to different binding modes for differ-
ent ligands within the Hsp90α binding pocket. However, the
repeated emergence of ASP102 in the three optimal models
(Table 2) strongly suggests that this amino acid plays a
central role in ligand–Hsp90α binding. The significance of
this amino acid in ligand–Hsp90α binding has also been
highlighted in previous publications [82, 83, 86].

Figures 2 and 3 show how dbCICA model I was translated
into the corresponding pharmacophoric models Hypo-IA and
Hypo-IB employing the DS 2.5 environment. Initially, the bind-
ing pocket was annotated by rendering significant contact atoms
that had emerged in dbCICA model I into spherical forms (see
Figs. 2a and 3a). Subsequently, we selected a few potent (IC50<
0.05 μM) and well-behaved docked compounds (i.e., which
showed the smallest differences between experimental and fitted
bioactivities, as determined by regressing the inhibitors’ bioac-
tivities and their docking-based contact summations). Thereafter,
appropriate pharmacophoric features were placed onto chemical
functionalities common to the aligned docked compounds, as
shown in Figs. 2d and 3d (see the section “Generation of

Fig. 5 Steps for the manual generation of the binding hypothesis
Hypo-III as guided by dbCICA model III (Tables 1 and 2). a The
binding-site moieties in dbCICA model A-III, with significant contact
atoms shown as spheres. b The docked pose of the well-behaved
compound 40 (Fig. 1 and Table A in the ESM, IC5000.014 μM) within
the binding pocket. c The docked poses of the well-behaved and potent
compounds 20, 23, 25, 26, 36, 40, and 48 (Fig. 1 and Table A in the
ESM). d Manually placed pharmacophoric features on chemical

moieties common to the docked well-behaved potent compounds 20,
23, 25, 26, 36, 40, and 48. Light blue spheres represent hydrophobic
features, violet spheres represent hydrogen-bond donors, green spheres
represent hydrogen-bond acceptors, and gray spheres represent exclu-
sion regions. e The docked pose of 40 and how it relates to the
proposed pharmacophoric features. f Exclusion spheres fitted against
binding-site atoms showing negative correlations with bioactivity (as
emergent in dbCICA model III)
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pharmacophores corresponding to successful dbCICA models”
under “Experimental” for more details).

The pharmacophoric features were placed in such a way as
to highlight the interactions encoded by the nearest critical

contacts. For example, in the case of dbCICA model I, the
emergence of a significant contact at the carboxylic oxygen of
Asp102, combined with the consensus among well-behaved,
potent docked ligands that quaternary ammonium groups

Table 3 The statistical results for the CoMFA models obtained via high-ranking anti-Hsp90α dbCICA-based docking/scoring combinations (as in
Table 1)

dbCICA modelsa Docking conditionsa Scoring
functiona

Termsb PCc Statistical criteria

r2 d r2 LOO
e r2 BS

f r2PRESS
g

Highesth ranking I LigandFit; ionized ligands;hydrated
binding pocket

JAIN 16 3 0.89 0.77 0.86 0.304 (0.49)i

II LigandFit; unionized ligands; hydrated
binding pocket

JAIN 16 4 0.91 0.81 0.88 0.36j (0.48)

III LigandFit; unionized ligands; hydrated
binding pocket

PLP2 8 4 0.77 0.66 0.76 0.384k (0.623)

Lowestl ranking LigandFit; ionized ligands; nonhydrated
binding pocket

PMF 6 5 0.68 0.60 0.66 −1.6

a dbCICA models and corresponding docking/scoring conditions are as described in Table 1
b Number of descriptor terms in the best CoMFA model
c Number of principal components (latent variables) in the best CoMFA model
d Non-cross-validated correlation coefficient for 67 training compounds
e Cross-validation correlation coefficients determined by the leave-one-out technique
f Bootstrapping correlation coefficient
g Predictive r2 determined for the 16 test compounds
h dbCICA models numbered as in Table 1
i rPRESS

2 value after removing one outlier, i.e., compound 50
j rPRESS

2 value after removing one outlier, i.e., compound 64
k rPRESS

2 value after removing one outlier, i.e., compound 73 (see Table A in the ESM for the structures of outliers)
l Example of a low-ranking dbCICA model (data not shown)

Fig. 6 Pharmacophoric
features and exclusion spheres
of a Hypo-IA, b Hypo-IB, c
Hypo-II, and d Hypo-III. Light
blue spheres represent hydro-
phobic features, red spheres
represent positive ionizable
features, violet spheres repre-
sent hydrogen-bond donors,
green spheres represent
hydrogen-bond acceptors, and
gray spheres represent exclu-
sion regions
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should be placed nearby (Figs. 2c and 3c), prompted us to
place a positive ionizable feature on the ammonium groups in
Hypo-IA (Fig. 2d). However, to account for the possibility
that the ligands’ quaternary ammonium groups interact with
Asp102 via hydrogen-bonding interactions, we suggested
placing a hydrogen-bond donor (HBD) feature at the same
position in a second related pharmacophore model derived
from dbCICA model I: Hypo-1B (Fig. 3; note that Hypo-1A
and Hypo-1B are identical in all other features.

Similarly, agreement among the docked, potent, and
well-behaved inhibitors that hydrophobic moieties should
be placed adjacent to PHE138 (carbon CE1), ILE96 (CB
and HG11), and H2O141 prompted us to place hydrophobic
pharmacophoric features at these positions, as shown in
Figs. 2d and e (or Figs. 3d and e). Finally, the significant

dbCICA contact at the carboxylic oxygen of ASP54 appar-
ently encodes for hydrogen bonding with hydrogen-bond
donors at the ligand side. This conclusion is supported by
the consensus among docked ligands that hydrogen-
bond donors should be oriented towards the ASP54
carboxylic acid. Accordingly, we were prompted to di-
rect the HBD feature towards the carboxylic acid side
chain of ASP54.

A similar strategy was implemented for the development of
pharmacophore models Hypo-II and Hypo-III, starting from
dbCICA models II and III, respectively (Tables 1 and 2).
Figures 4 and 5 show how these pharmacophore models—
including their exclusion regions—were generated, while
Table B in the ESM shows the x, y, and z coordinates of the
generated pharmacophores.
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Fig. 7 Receiver operating
characteristic (ROC) curves for
dbCICA-based pharmaco-
phores: a Hypo-IA, b Hypo-IB,
c Hypo-II, and d Hypo-III

Table 4 ROC curve analysis criteria for dbCICA-selected pharmacophores

Pharmacophore model ROCa-AUCb ACCc SPCd TPRe FNRf

Hypo-IA 1.0 0.926 0.953 0.587 0.046

Hypo-IB 0.913 0.926 0.957 0.539 0.043

Hypo-II 1.0 0.926 0.921 1.0 0.079

Hypo-III 0.919 0.927 0.949 0.65 0.05

a ROC receiver operating characteristic curve
b AUC area under the curve
c ACC overall accuracy
d SPC overall specificity
e TPR overall true positive rate
f FNR overall false negative rate
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Validation of the optimal anti-Hsp90α dbCICA models

Three validation procedures were implemented to assess the
dbCICA models: self-docking, CoMFA, and ROC analyses.

1. Self-docking. To assess the similarity between the ligand
poses/conformers produced by the docking conditions
of dbCICA models I, II, and III (Table 1) and the
crystallographic structure of the bound ligand, we com-
pared the docked poses of geldanamycin obtained using
the docking conditions of the three successful dbCICA
models with its co-crystallized pose (PDB code: 1YET,

resolution 1.9 Å). We compared our docking solutions
with this particular Hsp90α complex because all of our
docking–dbCICA modeling explorations were conducted
using this protein template.

Table 5 Numbers of selected, filtered, tested, active, and inactive hits retrieved by Hypo-IA, Hypo-IB, Hypo-II, and Hypo-III from the NCI’s list of
compoundsa

Number of in silico hits retrieved by

Refined Hypo-IA Refined Hypo-IB Refined Hypo-II Refined Hypo-III

Post-screening filteringb Before 130 412 67 1855

After 123 332 48 1345

Acquired from the NCIc 16 9 6 9

Number of activesd 9 6 4 3

Assayed to determine IC50 6 4 4 2

a The National Cancer Institute’s (NCI) list of available compounds includes 238,819 structures
b Using Lipinski’s and Veber’s rules. A maximum of two violations of Lipinski’s rule were tolerated
c The total number of compounds acquired from the NCI was 40 compounds. These resemble the highest ranking compounds based on their fit
values with respect to the corresponding pharmacophores
d Compounds with inhibition percentages of ≥25% at 10μMwere considered actives. The total number of captured active compounds is 21, amongwhich
one compound (89, Fig. 9) was captured by both Hypo-IB and Hypo-III. See Table 6 for the pharmacophoric origins of each captured active compound

Fig. 8 Sterically refined
versions of a Hypo-IA (39
added exclusion spheres), b
Hypo-IB (29 added exclusion
spheres), c Hypo-II (24 added
exclusion spheres), and d
Hypo-III (43 added exclusion
spheres)

4856 J Mol Model (2012) 18:4843–4863

Figure 1 compares the docked poses against the
co-crystallized pose. From the figure, it is clear that
the three docking solutions are very similar to
the experimental co-crystallized complex (RMS0
0.539 Å). Interestingly, the three docking conditions
produced identical docking solutions for geldanamy-
cin, despite their apparent differences from other
ligands (see Figs. 2, 3, 4, and 5). Apparently, the
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Fig. 9 Chemical structures of the tested highest-ranking hits captured by the dbCICA models (see Table 6 for the corresponding bioactivities)
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large molecular size and feature-rich nature of gel-
danamycin, combined with its rigid structure, force

the three docking conditions to converge upon a
single docked conformer/pose for geldanamycin.
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Fig. 9 (continued)

Table 6 High-ranking NCI ac-
tive hits captured by the
dbCICA-based pharmacophores

a Hits shown in Fig. 9
b Geldanamycin as the standard
inhibitor with IC500420 nM.
Reported Geldanamycin IC500
281 nM [95]. Corresponding
dose–response relationships are
shown in Fig. B in the ESM
c The pharmacophore(s) that
was/were used to retrieve the hit

Compounda NCI code Percent inhibition at 10 μMb Pharmacophorec

84 NSC365362 79 % Hypo-III

85 NSC56634 80 % Hypo-IA

86 NSC5475 64 % Hypo-IA

87 NSC55136 74 % Hypo-IA

88 NSC63289 68 % Hypo-IA

89 NSC32977 70 % Hypo-IB, Hypo-III

90 NSC142539 65 % Hypo-IB

91 NSC166380 55 % Hypo-IA

92 NSC157531 59 % Hypo-II

93 NSC12270 53 % Hypo-II

94 NSC362149 56 % Hypo-IB

95 NSC305761 52 % Hypo-IA

96 NSC106052 48 % Hypo-III

97 NSC282463 47 % Hypo-II

98 NSC13617 44 % Hypo-IA

99 NSC12150 48 % Hypo-II

100 NSC141100 43 % Hypo-IA

101 NSC56615 40 % Hypo-IA

102 NSC130822 31 % Hypo-IB

103 NSC146835 30 % Hypo-IB

104 NSC131747 55 % Hypo-IB
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2. CoMFA modeling. To further validate our optimal
dbCICA models (models I, II, and III; Table 1), we
assessed whether their corresponding molecular align-
ments yield self-consistent and predictive CoMFA mod-
els [17, 58, 72, 73]. For comparison purposes, a similar
assessment was performed for the molecular alignment
of a low-ranking dbCICA model (e.g., docking ionized
ligands into a nonhydrated binding pocket using the
PMF scoring function, which achieved an r5-fold

2 of
0.203; unpublished data). Table 3 shows the statistical
criteria for the resulting CoMFA models.

Table 3 shows that molecular alignments based on
the top three dbCICA models (i.e., I, II, and III; Tables 1
and 2) achieved corresponding self-consistent CoMFA
models of acceptable predictive power, particularly after
eliminating one outlier from their testing sets. On the
other hand, the low-ranking dbCICA model coincided
with a low-quality CoMFA model that completely failed
to predict the bioactivities of the testing set (negative
rPRESS

2 in Table 3). The good agreement between
CoMFA and dbCICA provides additional evidence of
the utility of dbCICA modeling as a validation tech-
nique in docking studies.

3. Receiver operating characteristic curve analysis of
corresponding pharmacophores (Hypo-IA, Hypo-1B,
Hypo-II, and Hypo-III; Fig. 6).

The four pharmacophores were subjected to receiver
operating characteristic (ROC) curve analysis. In ROC
analysis, the ability of a particular pharmacophore mod-
el to correctly classify a list of compounds as actives or
inactives is indicated by the area under the curve (AUC)
of the corresponding ROC, as well as other parameters:
overall accuracy, overall specificity, overall true positive
rate, and overall false negative rate (see “SM-1” in the
ESM for details) [70, 82, 87, 88–93]. Figure 7 and
Table 4 show the ROC performances of our dbCICA-
based pharmacophores. It is clear from both the figure and
table that Hypo-IA and Hypo-II outperformed Hypo-IB
and Hypo-III. The reason for this behavior is probably
related to the presence of the positive ionizable feature in
Hypo-IA and an extra feature in Hypo-II (six features
compared to five in the other three pharmacophores).
Positively charged atoms are relatively scarce, which
enhances the selectivity of Hypo-IA, while the extra fea-
ture in Hypo-IB enforces additional 3D requirements on
captured hits, thus boosting the selectivity of Hypo-II.

Fig. 10 Selected Hsp90α inhibitory hits and how they dock into the
binding site of Hsp90. a The docked pose of hit 85 (Fig. 9 and Table 6,
IC5004.6 μM), employing the docking conditions of model I (Tables 1
and 2). b The docked pose of 85 and how it relates to the pharmaco-
phoric features of Hypo-IA. cMapping the docked pose of 85 to Hypo-

IA. d The docked pose of hit 89 (Fig. 9 and Table 6, IC5005.9 μM),
employing the docking conditions of model I (Tables 1 and 2). e The
docked pose of 89 and how it relates to the pharmacophoric features of
Hypo-IB. f Mapping the docked pose of 89 to Hypo-IB
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In silico screening and in vitro validation

Prior to in silico screening, we decided to sterically refine
our dbCICA-derived pharmacophores in order to increase
the probability of bioactivity in the captured hits. Steric
refinement was performed by employing the HipHop-
Refine module of the Catalyst package [80]. HipHop-
Refine decorates pharmacophoric models with exclusion
spheres that resemble sterically forbidden regions (i.e.,
sterically-clashing topologies within the binding pocket).
HipHop-Refine requires a group of training compounds to
identify spaces that are occupied by inactive compounds and
are free from active ones, in order to fill them with exclusion
volumes. See the section “SM-2” and Table C in the ESM
for more information and experimental details about how we
decorated our pharmacophores with additional exclusion
spheres. Figure 8 shows the sterically refined versions of
Hypo-IA, Hypo-IB, Hypo-II, and Hypo-III.

The sterically refined versions of the pharmacophores were
implemented as 3D search queries to screen the National Can-
cer Institute’s list of compounds (NCI; this includes 238,819
compounds). NCI hits were subsequently filtered by Lipinski’s
and Veber’s rules [94]. The resulting hits were docked into the
Hsp90α protein (PDB code: 1YET) employing the same dock-
ing conditions of dbCICAmodels I–III (as in Table 1) and fitted

against the corresponding pharmacophores models. The fit
values were employed to rank the corresponding hits and
prioritize subsequent in vitro testing. The highest ranking 40
hits were acquired from the NCI and tested in vitro against
Hsp90. Table 5 summarizes the number of hits retrieved using
each pharmacophore and the remaining active hits following
post-screen filtering and in vitro testing. Figure 9 shows the
chemical structures of the active hits, while Table 6 shows their
corresponding NCI codes, experimental bioactivity values, and
the pharmacophores used to retrieve them. Figure B in the ESM
shows the dose–response curves of the active hits.

Table 6 and Fig. 9 clearly show that out of the 40 highest-
ranking hits acquired for experimental validation, 15 possessed
significant ATPase inhibitory activities against Hsp90α (i.e.,
with inhibition percentages exceeding 50 %). Interestingly, the
active hits had significantly different chemical scaffolds than
the training molecules, which should enhance confidence in
the dbCICAmodeling strategy and the corresponding pharma-
cophores (i.e., the models were robust enough to allow scaffold
hopping without any loss of bioactivity). Furthermore, a de-
tailed examination of the docked poses of the active hits shows
they share binding-site contacts with the training compounds;
moreover, they fit the corresponding pharmacophoric models
in a similar manner to the training molecules. Figures 10 and
11 show how three of the retrieved hits dock into the ATPase

Fig. 11 a The docked pose of hit 92 (Fig. 9 and Table 6), employing
the docking conditions of model II (Tables 1 and 2). b The docked pose
of 92 and how it relates to the pharmacophoric features of Hypo-II. c
Mapping the docked pose of 92 to Hypo-II. d The docked pose of hit

89 (Fig. 9 and Table 6), employing the docking conditions of model III
(Tables 1 and 2). e The docked pose of 89 and how it relates to the
pharmacophoric features of Hypo-III. fMapping the docked pose of 89
to Hypo-III
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binding pocket of Hsp90α, and how they map onto the
corresponding pharmacophores.

Conclusions

In the current study, we implemented our newmethodology—
docking-based comparative intermolecular contacts analysis
(dbCICA)—in order to find the optimal docking configura-
tions that were required to fit 83 Hsp90α inhibitors into the
ATPase-binding pocket of this chaperone. Furthermore, the
optimal dbCICAmodels were translated into valid pharmaco-
phoric models that were used as 3D search queries to find new
Hsp90α inhibitors in the NCI structural database. Fifteen hits
exhibited significant inhibitory profiles against Hsp90α (i.e.,
with inhibition percentages exceeding 50 %). Our novel ap-
proach proved to be useful for validating the docking con-
ditions of Hsp90α and as means to screen virtual compound
libraries for new hits.
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